Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian accretionary wedge (NW Italy) and relationships with tectonics, global climate change and the dissociation of gas hydrates

Por um escritor misterioso
Last updated 20 setembro 2024
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Longitude versus porosity and uniaxial compressive strength. The
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
PDF] Structural anatomy of the Ligurian accretionary wedge (Monferrato, NW Italy), and evolution of superposed mélanges
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Recycling of heterogeneous material in the subduction factory: evidence from the sedimentary mélange of the Internal Ligurian Units, Italy
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Multistage tectono-stratigraphic evolution of the Canavese Intracontinental Suture Zone: New constraints on the tectonics of the Inner Western Alps - ScienceDirect
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Polygenetic mélanges: a glimpse on tectonic, sedimentary and diapiric recycling in convergent margins
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Multistage tectono-stratigraphic evolution of the Canavese Intracontinental Suture Zone: New constraints on the tectonics of the Inner Western Alps - ScienceDirect
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Recycling of heterogeneous material in the subduction factory: evidence from the sedimentary mélange of the Internal Ligurian Units, Italy
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Contatto stratigrafico fra il till di alloggiamento della conca del
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
PDF) A tectonically-induced Eocene sedimentary mélange in the West Ligurian Alps, Italy
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Geosciences, Free Full-Text
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
Variation of septarian crack timing with respect to diagenetic
Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian  accretionary wedge (NW Italy) and relationships with tectonics, global  climate change and the dissociation of gas hydrates
PDF] Redefinition of the Ligurian Units at the Alps–Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from mélanges and broken formations

© 2014-2024 lexenimomnia.com. All rights reserved.