Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus

Por um escritor misterioso
Last updated 20 setembro 2024
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. - Abstract - Europe PMC
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
3D-SIM of Inhibitory Synapses (A) Schematic of the inhibitory synapse
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Molecular replacement with Nrxn3 A687T SS4 enhances presynaptic release
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Biomolecules, Free Full-Text
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
GitHub - Han-y/Synapse-Model-for-Aoto-Lab
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Modeling a Neurexin-3α Human Mutation in Mouse Neurons Identifies a Novel Role in the Regulation of Transsynaptic Signaling and Neurotransmitter Release at Excitatory Synapses
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Quantification of the trans-synaptic partners neurexin-neuroligin in CSF of neurodegenerative diseases by parallel reaction monitoring mass spectrometry - eBioMedicine
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Combinatorial expression of neurexins and LAR-type phosphotyrosine phosphatase receptors instructs assembly of a cerebellar circuit

© 2014-2024 lexenimomnia.com. All rights reserved.